xpag.agents.flax_agents.sac.sac.FlaxSAC#
- class FlaxSAC(observation_dim, action_dim, params=None)#
Bases:
AgentInterface to the SAC agent from JAXRL (https://github.com/ikostrikov/jaxrl)
Methods:
value()- computes Q-values given a batch of observations and a batch ofactions.
select_action()- selects actions given a batch of observations ; there aretwo modes: one that includes stochasticity for exploration (eval_mode==False), and one that deterministically returns the best possible action (eval_mode==True).
train_on_batch()- trains the agent on a batch of transitions (one gradientstep).
save()- saves the agent to the disk.load()- loads a saved agent.write_config()- writes the configuration of the agent (mainly itsnon-default parameters) in a file.
Attributes:
_config_string- the configuration of the agent (mainly its non-defaultparameters)
saclearner_params- the SAC parameters in a dict :“actor_lr” (default=3e-3): the actor learning rate “critic_lr” (default=3e-3): the critic learning rate “temp_lr” (default=3e-3): the temperature learning rate “backup_entropy” (default=True): if True, activates the entropy-regularization of the critic loss “discount” (default=0.99): the discount factor “hidden_dims” (default=(256,256)): the hidden layer dimensions for the actor and critic networks “init_temperature” (default=1.): the initial temperature “target_entropy”: the target entropy; if None, it will be set to -action_dim / 2 “target_update_period” (default=1): defines how often a soft update of the target critic is performed “tau” (default=5e-2): the soft update coefficient “policy_final_fc_init_scale” (default=1.): scale parameter for the initialization of the final fully connected layers of the actor network
sac- the SACLearner object that contains and trains the actor and criticnetworks
Methods
loadsaveselect_actiontrain_on_batchvaluewrite_config